FRAMELESS BRUSHLESS MOTORS FOR DIRECT DRIVE ALXION STK

STK Motors	Presentation	4
1455	STK Dimensions Characteristics Curve Torque / Speed	7 8 9
1905	STK Dimensions Characteristics Curve Torque / Speed	11 12 13
3005	STK Dimensions Characteristics Curve Torque / Speed	15 16 17
4005	STK Dimensions Characteristics Curve Torque / Speed	19 20 21
5005	STK Dimensions Characteristics Curve Torque / Speed	23 24 25
8005	STK Dimensions Characteristics Curve Torque / Speed	27 28 29
STK	Motors codification	30
Resolver ALX	(ION	

STK RANGE OF FRAMELESS BRUSHLESS SERVOMOTORS FOR DIRECT DRIVE

Since the early 90's, **ALXION** is well known to be an uncontested specialist of Direct Drive motors with its FC motors range. This built-in range of motors "ready to use" is the ideal solution for printing machines, bending machines, or machine tools, which require an excellent regularity of rotation especially at very low speed and a very high accuracy with a hollow shaft available up to 70 mm.

With the STK range, **ALXION** addresses direct drive applications that could not be satisfied with the FC range:

- The applications needing a full integration of the motor in the servomechanisms due to volume and weight criteria;
- The applications needing a high diameter crossing hollow shaft demanding a ring type technology.

MAIN CHARACTERISTICS:

- Continuous torque from 14.6 Nm up to 2708 Nm in natural convection and up to 6100Nm in fluid cooling depending on the size.
- $\cdot\,\text{Six}$ external diameters from 145 mm up to 800 mm.
- · Internal diameter from 56 mm up to 630 mm.
- · Various available windings from 30 rpm up to 1500 rpm depending on the size.

The range of permanent magnets brushless motors **ALXION** STK has been specially designed for the direct drive of axis without gears needing very low volume and weight regarding the torques and powers to be developed.

Therefore, both electromagnetic and thermal optimisation have allowed to reach continuous torque-to-weight up to 15 Nm / Kg in natural convection and up to 30 Nm / Kg in fluid cooling.

However, the range of frameless motors **ALXION** STK addresses very demanding industrial applications in terms of performances (dynamics, compacity, accuracy in regularity at low speed), in reliability but also in terms of costs. A particular attention has therefore been dedicated in the design so that a mixed technical and economical optimisation could be achieved.

On another hand, the industrial users can be sometimes unsatisfied by direct drive motors because they are generally torque motors getting therefore a reduced power and speed. **ALXION** got the ambition to answer that objection with the STK range by creating motors that could satisfy the low speed applications with their related speed regularity and also to address the direct drive applications up to 30 KW in natural convection and 100 KW in fluidcooling with speed reaching up to 1500 rpm, depending on the size.

The various speeds can be reached thanks to several windings versions. Some of them are illustrated in that catalogue but numerous winding versions allowing to optimise the drive current rating can be easily achieved.

For all detailed specifications related to integration and environment, please ask for our « handbooks for integration »

MOTOR CONSTITUTION

<u>ARMATURE</u>: It is consistent of iron laminations bearing the windings and fixed to the external housing. The windings are encapsulated in resin. Housing is either smooth either grinded for bearing the engravement of the cooling circuit when it is requested.

- Winding in H class.
- Output cable class 6 with 4 shielded wires for the power.
- Thermal protection by PTC resistor and linear resistor KTY84 embedded in the winding. Output cable class 6 with 2 shielded pairs.

<u>ROTOR</u>: Rare earth magnets protected against corrosion are stuck around a magnetic iron ring.

STATOR AND ROTOR MOUNTING

Optionally STK armatures and rotors can be shipped mounted on a centering and positioning flange for avoiding the user to make the operation of mounting and centering the rotor inside the stator.

OPERATION IN NATURAL CONVECTION

The armature is the source of both current losses and hysteretic and eddy current losses. It will be necessary to take it into account for integrating the motor. Here are the main elements to be taken in consideration:

Permanent torgues of the motors are indicated for a copper temperature rise of 120°C for armatures in contact with ambient air or integral on all their peripheral area with a metallic part in contact with ambient air. In addition, the motor housing has to be fixed on a metallic flange with an area equal to at least twice its section. For example, for a 400 mm diameter motor, the flange will have an area equal to: $2 \cdot \frac{\pi \cdot 0.4^2}{4}$ *i.e.* $0.25m^2$

Avoid any enclosed environment or if it is necessary consult us for knowing the motor derating.

Be sure that the materials located in the motor vicinity can bear high temperatures or if it is not the case consult us for knowing the motor derating.

FLUID COOLING

For avoiding to be dependent from environment problems related to overheating or in the case when continuous torgues higher than those got in natural convection are needed, a fluid cooling will be used.

Two operating points are characterised in fluid cooling:

- Winding at 60°C.
- Maximum cooling (winding at 140°C) for getting the maximum continuous torque of the motor.

Use glycoled softened water or a fluid approved for closed cooling circuit in order to minimise the risks of corrosion and deposits.

The housing engravement is consistent of 2 extremity grooves for O - ring, then two circular grooves allowing the input and the output of the fluid separated by the cooling circuit.

When mounting the device, the input and output pipes will be axially aligned at the opposite of the input and the output of the cooling circuit.

DRIVES AND ASSOCIATED POSITION SENSORS

The frameless motors **ALXION** STK have been designed for minimising the torgue harmonics when they are fed by sinusoidal wave drives for brushless motors.

The STK motors are therefore compatible with a wide spectrum of brushless drives available on the market and namely with the ranges of single axis digital drives MOOG, DBS and DS 2000 and multiaxis DBM, SIEMENS 611D with AN power supply, NUM Schneider MDLU, Parker COMPAX, GE FANUC, CONTROL-TECHNIQUES UNIDRIVE. B & R. DANAHER Servostar 600. ...

However, in the aim of maximising the servo performances, we do recommend to use drives including the following features:

- · Digital current loop with programmable gains or self adaptative gains.
- · Built-in anti-resonant programmable filters on the speed error in order to maintain high servo gains in the case when the load inertia is very high related to the rotor inertia.

· Various positioning sensor interfaces: the drives can be compatible with 4 kinds of positioning interfaces:

- Resolver:

The resolvers are in the best cases (**ALXION** resolver RES FC6 72 32) limited to an accuracy of 1 arc minute. In most of the resolvers available on the market, accuracy is rather around several minutes.

It will be necessary to check whether the desired positioning accuracy is compatible with the resolver accuracy and also the electronic resolver-to-digital circuit.

On another hand, the resolvers limit the applications due to the crossing hollow shaft. The resolvers **ALXION** RES FC6 72 32 allow a hollow shaft up to 90 mm.

Finally, the resolvers allow to get a resolution up to several hundred thousands of points per revolution but such a high resolution is not useful because it is not compatible with the accuracy of the measurement system.

- TTL encoder or TTL optical scale:

The TTL encoders have generally a limited number of cpr (from 500 up to 5000). One can find some encoders with hollow shaft up to 50 mm internal diameter and with a number of cpr between 15000 and 20000 (to be multiplied by 4).

The best solution in terms of resolution and accuracy consists in the optical scales with pitches from 0.5 to 5 μ that can be stuck on a hollow hub with appropriate diameter. They can allow a resolution equal to 1 million cpr or much more according to the diameter.

The associated read heads are characterised by a maximum frequency limiting so the speed for a given resolution.

- Sin / cos encoder or sin /cos scales:

These encoders or scales are the most widely used.

The same limitations as previously mentioned exist on these devices. However, the advantage of this technology consists in the possibility to multiply the sine wave signals of these encoders thanks to appropriate drive interfaces. Thus, an encoder with 1024 sine waves per resolution will allow with multiplication per 1000 to get one million cpr. The sin / cos optical scale gets the advantage to allow both high resolution either naturally either by internal drive interpolation and a crossing hollow shaft without any limitation thanks to its sticking on an appropriate diameter hub. Some encoder suppliers integrate in their catalogue optical scales mounted on hubs with various diameters. Some bearing manufacturers integrate sine wave measuring scales in the bearings.

- Absolute encoders:

The absolute encoders allow to get the characteristics described for the TTL or Sin-Cos encoders without the need of starting sequence for phase commutation (see following paragraph). They do not need a homing phase for the axis origin.

PHASES COMMUTATION

The permanent magnets synchronous motors need a constant phase between the armature and the rotor rotating fields in order to control the torque. The resolver allows this phasing and gives simultaneously the axis position (on one polar pitch). The absolute encoders allow also that phasing. It is not the case with incremental encoders or scales.

The encoder suppliers have therefore specific ranges for brushless motors including either:

a) Three phase commutation rectangular signals $U, V, W, \overline{U}, \overline{V}, \overline{W}$ in the case of TTL encoders ; but these waveforms should have the same number of periods per revolution than the motor (polarity).

b) Sine waves signals (1 period per revolution) sine and cosine giving the absolute position on a revolution in the case of sin / cos encoders. The drive electronic interface multiplies that frequency by the number of the motor pole pairs.

In the case of optical scales mounted on hubs, the information related to the phasing between the armature and the rotor fields is not known. Therefore an initialisation sequence is needed during start-up; during that sequence the rotor will operate an indexing motion or at least a microvibration.

MOTORS 145 STK

Natural convection

DIMENSIONS FOR ALL 145 S	тк	
Housing internal centering diameter	A H8	130
Angle wire output / tapped holes	AF	22°30'
Housing external centering diameter (fluid cooling)	B f8	153
Housing external centering diameter (natural convection)	B f8	145
Rotoric internal centering diameter	C H7	56
Housing internal diameter	De	78.5
Depth of fluid front input / output groove	E1	4
Width of fluid front input / output groove	E2	13.35
Position of fluid front I/O groove	E3	16.3
Rotoric fixation holes	FR	8xM5 sur Ø63
Housing fixation holes	FS	8xM5 sur Ø136
O-ring groove depth	J1	2.3
O-ring groove width	J2	4
Position of rear o-ring groove	J3	3
Position of front o-ring groove	J4	10.8
Depth of housing internal centering diameter	LA	2
Alignment rotor / housing	P ± 0.1	20.5
Maximum rotoric contact diameter	Pmax	75
Depth of fluid rear I/O groove	S1	4
Width of fluid rear I/O groove	S2	13.35
Position of fluid rear I/O groove	S3	8.5

			DI	MEN	sions	S ACC	CORD	ING 1	ro siz	ZE	
	55 Real										
	LB±0.15	92	119	146	173	200	227	254	281	(
_	R +0.15	59	86	113	140	167	194	221	248		

INTEGRATION:

- The cables are made of PU, class 6, foreseen for cable-bearing chains, 2 mt standard length, copper square section according rated current.
- Rotor / housing alignment (P) has to be executed within +/- 0.1 mm. Optionally, we can supply a mounting tool for achieving that alignment in case of assembly without possibility of accurate alignment.
- ✓ Thermal devices cable consists of 2 shielded pairs 2x2x0.25mm² section, 7 mm max external diameter.
 - (De) represents: 1- The maximum diameter passing inside the housing.
 - 2- The minimum diameter necessary for rotor assembly.
- (Pmax) diameter for pieces in contact with the rotor must never be exceeded.
- ✓ Tapped holes on each side of rotor and housing are angularly aligned.
- Cable positioning (AF) is theoretical. Leave a free room with a +/- 10 arc degrees tolerance around that position, on a 50 mm height from the housing side, for avoiding to stress the cables at the motor output.
- Do not tighten, twist or bend the power cable on the first 50 mm from motor side. Clamp the cable after those 50 mm.
- V When designing the assembly, take care to insure a perfect contact between housing and user's bore for avoiding thermal problems.
- For housing mounting, use either external centering diameter (B) or internal centering diameters (A).
- ✓ For execution tolerances (perpendicularity, concentricity...), please consult us.
- Fluid input and output pipes have to be placed at the opposite of wire outputs on the same axial plane.
- O-ring grooves designed for 3 mm diameter o-rings.

															
				145S	TK1M	145S	TK2M	145S	ТКЗМ	145S	ТК4М	145S	ТК6М	145S	ТК8М
	Rated speed		rpm	500	1500	500	1500	500	1500	500	1500	500	1500	500	1500
	Continuous torque at stall	(1)(4)	N.m	8	3	14	.6	20).5	26	.4	37	7.3	47	' .4
	Current at continuous torque	(1)	А	1.6	2.9	2.3	5.2	2.9	6.7	3.7	9.2	5	12.7	6.4	15.7
	Peak torque	(2)(3)	N.m	27	.5	5	5	8	3	1'	10	10	65	22	20
z	Current at peak torque	(2)	Α	6.9	11.1	10.2	23.1	14.9	34.2	17.8	45.5	27.3	68.3	35.6	91.1
티	Rated power	(1)	W	390	866	710	1850	992	2504	1260	3080	1770	3830	2230	4580
IVEC	Inertia		10⁻³kg.m²	0.	80	1.:	28	1.	76	2.	24	3.	19	4.	14
ç	Weight		kg	4	.1	6	2	8	.5	10	.4	14	1.5	18	8.7
ZAL	Thermal time constant	(1)	s	8	50	10	12	12	:06	13	99	16	67	18	66
TU	Thermal resistance	(1)	°C / W	0.4	147	0.394		0.	0.36		324	0.275		0.239	
ž	Phase resistance at 20°C	(2)	Ω	21.6	7.9	12.9	2.55	7.52	1.43	6.2	0.95	3.46	0.55	2.51	0.38
	Phase inductance at I continuous		mH	72	25.8	66.7	12.4	47.8	9.1	44.5	6.8	28.2	4.5	22.2	3.4
	Electrical time constant	(2)	ms	3	.4	5.	1	6	.4	7.	2	8	.2	8	.9
	Back emf constant (line to line)	(2)	V/rad.s	3.13	1.86	4.25	1.91	4.38	1.91	4.88	1.91	4.78	1.91	4.88	1.91
	Power cable square section		nxmm ²	4x1.5		4x	1.5	4x	1.5	4x	1.5	4x	1.5	4x1.5	
	Power cable diameter		mm	Ø	3.6	Ø	3.6	Ø	3.6	Ø	3.6	Ø	3.6	Ø	3.6
	Number of poles														

			145STK1M	145STK2M	145STK3M	145STK4M	145STK6M	145STK8M
	Continuous torque at stall (4)	N.m	11	22.8	33.8	45.3	67.6	90
	Current at continuous torque	A	2.4 4	3.5 8	5.2 12	6.3 15.6	9 22.8	12.1 29.8
ors	Fluid input temperature (5)(6)	°C	20	20	20	20	20	20
10T	Fluid temperature rise	°C	3	5	4	5	7	8
ED 1	Housing temperature	°C	< 30	< 30	< 30	< 30	< 30	< 30
OOL	Fluid flow	l / mn	2	3	3	3	3	3
O-O	Losses	w	490	620	780	930	1220	1510
ר ו	Pressure drop	Bar	0.1	0.2	0.2	0.3	0.4	0.5
-	Power cable square section	nxmm ²	4x1.5	4x1.5	4x1.5	4x1.5	4x1.5 4x4	4x1.5 4x4
	Power cable diameter	mm	Ø8.6	Ø8.6	Ø8.6	Ø8.6	Ø8.6 Ø12.2	Ø8.6 Ø12.2

				145S	TK1M	145S	TK2M	145S	ТКЗМ	145S	TK4M	145S	ТК6М	145S	ТК8М
		Continuous torque at stall (4)	N.m	1	5	29	9.9	4	6	59	.8	g	0	12	20
В.,		Current at continuous torque	A	3.4	5.7	5.4	12.3	7.5	17.1	9.7	24	14	35.5	19	46.8
A F	ų	Fluid input temperature (5)(6)	°C	2	20	2	0	2	0	2	0	2	20	2	0
TOT NOT	140°	Fluid temperature rise	°C	4	5	8	3	8	3	8	3	1	0	1	2
Ϋ́	ΑT	Housing temperature	°C	<	30	3	3	<	30	~	30	<	30	3	1
	5NG	Fluid flow	I / mn		4	:	3	4	1	Ę	5		5	!	5
EME O		Losses	w	11	87	15	32	18	55	22	40	29	50	36	60
	>	Pressure drop	Bar	0	.2	0	.2	0	.4	0.	.7		1	1	.3
8		Power cable square section	nxmm ²	4x	1.5	4x	1.5	4x1.5	4x2.5	4x1.5	4x4	4x1.5	4x6	4x2.5	4x10
		Power cable diameter	mm	Ø	8.6	Ø	3.6	Ø8.6	Ø10.8	Ø8.6	Ø12.2	Ø8.6	Ø14	Ø10.8	Ø17.6

(1) Thermal conditions:

COMPLEMENTARY DATA FOR

Ambient temperature 20°C

Winding temperature rise 120°C

Stator housing in contact with the ambient air or integral on all its peripheral area with a metallic armature in contact with the ambient air. Stator housing secured on a metallic frame having an area equal to twice the cross section of the housing.

(2) Cold motor at 20°C

(3) See torque vs speed characteristics on :

http://www.alxion.com/

(4) Torque at stall or low speed.

(5) Fluid input temperature should not be lower for avoiding condensation inside the motor.

(6) For cooling fluid, use softened gycol-added water or fluids approved for closed cooling circuits.

TORQUE VS SPEED CURVES MOTORS 145STK

TORQUE VS SPEED CURVES MOTORS 145STK

MOTORS 190 STK

Natural convection

DIMENSIONS FOR ALL 190 S	тк	
Housing internal centering diameter	A H8	172
Angle wire output / tapped holes	AF	22°30'
Housing external centering diameter (fluid cooling)	B f8	193
Housing external centering diameter (natural convection)	B f8	190
Rotoric internal centering diameter	C H7	72
Housing internal diameter	De	98
Depth of fluid front input / output groove	E1	3
Width of fluid front input / output groove	E2	11.7
Position of fluid front I/O groove	E3	15.5 <mark>(45.5)</mark>
Rotoric fixation holes	FR	8xM5 sur Ø80
Housing fixation holes	FS	8xM5 sur Ø180
O-ring groove depth	J1	2.3
O-ring groove width	J2	4
Position of rear o-ring groove	J3	5
Position of front o-ring groove	J4	10 <mark>(40)</mark>
Depth of housing internal centering diameter	LA	2
Alignment rotor / housing	P ± 0.1	23 <mark>(53)</mark>
Maximum rotoric contact diameter	Pmax	94
Depth of fluid rear I/O groove	S1	3
Width of fluid rear I/O groove	S2	11.7
Position of fluid rear I/O groove	S3	10.5

	DIMENSIONS ACCORDING TO SIZE										
		10	MLXIN VIX	11231	Mey 10	CT.	LI KOW	ST. KOW	Mesus	1184	
		/ &	/ \$	067	/ \$	/ &	/ \$	61	18	/	
Housing length	LB±0.15	103.75 (133.75)	140 (175)	176.25 (206.25)	212.5 (242.5)	248.75 (278.75)	285 (315)	321.25 (351.25)	357.5 (387.5)		
Rotor length	R +0.15	68.25	104.5	140.75	177	213.25	249.5	285.75	322		

The dimensions in red in the table are valid in the case of a rated current greater than 53 A and class 6 shielded cable output

We also offer the possibility of not shielded output wires without need of stator length increase.

INTEGRATION:

The cables are made of PU, class 6, foreseen for cable-bearing chains, 2 mt standard length, copper square section according rated current.

- Rotor / housing alignment (P) has to be executed within +/- 0.1 mm. Optionally, we can supply a mounting tool for achieving that alignment in case of assembly without possibility of accurate alignment.
- ✓ Thermal devices cable consists of 2 shielded pairs 2x2x0.25mm² section, 7 mm max external diameter.
 - (De) represents: 1- The maximum diameter passing inside the housing.
 - 2- The minimum diameter necessary for rotor assembly.
- (Pmax) diameter for pieces in contact with the rotor must never be exceeded.
- ✓ Tapped holes on each side of rotor and housing are angularly aligned.
- Cable positioning (AF) is theoretical. Leave a free room with a +/- 10 arc degrees tolerance around that position, on a 50 mm height from the housing side, for avoiding to stress the cables at the motor output.
- Do not tighten, twist or bend the power cable on the first 50 mm from motor side. Clamp the power cable after those 50 mm.
- When designing the assembly, take care to insure a perfect contact between housing and user's bore for avoiding thermal problems.
- ✓ For housing mounting, use either external centering diameter (B) or internal centering diameters (A).
- ✓ For execution tolerances (perpendicularity, concentricity...), please consult us.
- ✓ Fluid input and output pipes have to be placed at the opposite of wire outputs on the same axial plane.
- O-ring grooves designed for 3 mm diameter o-rings.

190STK6M		TK4M	190STK4M		190S	TK2M	190S	TK1M	190S				
1000	500	1500	500	1500	500	1500	500	1500	500	rpm		Rated speed	
9	8	i3	6	9	4	6	3	9	1	N.m	(1)(4)	Continuous torque at stall	
20	11.1	19.3	7.1	13.2	5.9	11.7	4.5	6.5	3	A	(1)	Current at continuous torque	
72	3	48	24	86	18	24	12	2	6	N.m	(2)(3)	Peak torque	
102.5	56.9	93.2	34.2	60.3	27	48.9	18.6	25.6	11.8	Α	(2)	Current at peak torque	
7085	4250	6590	3024	5259	2360	4230	1730	2560	910	w	(1)	Rated power	
.88	10	.5	7.	.8	5	12	4.	.4	2	10 ⁻³ kg.m ²		Inertia	
51	3	2	2	7.5	17	3	1	.5	8	kg		Ö Weight	
59	25	29	21	50	18	06	15	00	12	s	(1)	Thermal time constant	
17	0.	.2	.23 0		0.	0.25		28	0.	°C / W	(1)	Thermal resistance	
0.31	1.02	0.28	2.12	0.56	2.76	0.69	4.76	2	9.45	Ω	(2)	Phase resistance at 20°C	
4.8	15.7	3.9	28.8	6.4	31.7	7	48.2	11.8	55.2	mH		Phase inductance at I continuous	
5.6	15	3.6	13	1.5	11).1	10	.9	5	ms	(2)	Electrical time constant	
2.8	5.04	2.05	5.6	2.38	5.32	1.96	5.13	1.87	4.06	V/rad.s	(2)	Back emf constant (line to line)	
4x2.5	4x1.5	4x2.5	4x1.5	1.5	4x	1.5	4x	1.5	4x	nxmm²	(7)	Power cable square section	
Ø10.8	Ø8.6	Ø10.8	Ø8.6	Ø8.6		Ø8.6		Ø8.6		mm	(7)	Power cable diameter	
2				12								Number of poles	
			2	1								Number of poles	
	TK6M 1000 19 20 72 102.5 7085 .88 11 .59 17 0.31 4.8 5.6 2.8 4x2.5 Ø10.8	H90S ▼K6M 500 1000 89 11.1 20 372 56.9 102.5 4250 7085 10.8 31 2559 0.31 15.7 4.8 15.7 4.8 15.7 4.8 4x1.5 4x2.5 Ø8.6 Ø10.8	190STK6M 1500 500 1000 3 89 19.3 11.1 20 18 372 93.2 56.9 102.5 6590 4250 7085 5 10.88 2 29 2559 2 20 0.17 0.28 0.28 1.02 0.31 3.9 15.7 4.8 3.6 15.6 2.05 2.05 5.04 2.8 4x2.5 4x1.5 4x2.5 Ø10.8 Ø8.6 Ø10.8	1905 \top K4M 1905 \top K6M 500 1500 500 1000 63 89 7.1 19.3 11.1 20 248 372 34.2 93.2 56.9 102.5 3024 6590 4250 7085 7.5 10.88 22 31 2129 2559 0.2 0.17 2.12 0.28 1.02 0.31 28.8 3.9 15.7 4.8 13.6 15.6 2.05 5.04 2.8 4x1.5 4x2.5 4x1.5 4x2.5 Ø8.6 Ø10.8 Ø8.6 Ø10.8	1905 \top 4M 1905 \top 6M 1500 500 1500 500 1000 9 63 89 13.2 7.1 19.3 11.1 20 36 248 372 60.3 34.2 93.2 56.9 102.5 5259 3024 6590 4250 7085 .8 7.5 10.88 7.5 10.88 7.5 22 31 56.9 1.02 500 2129 2559 23 0.2 0.17 0.56 2.12 0.28 1.02 0.31 6.4 28.8 3.9 15.7 4.8 .5 13.6 15.6 2.28 1.5 2.38 5.6 2.05 5.04 2.8 1.5 4x1.5 4x2.5 4x1.5 4x2.5 3.6 Ø8.6 Ø10.8 Ø8.6 Ø10.8	1905 $I = 300$ 1905 $I = 440$ 1905 $I = 500$ 1900 1900 500 1500 500 1500 500 1000 49 63 89 500 11.1 20 5.9 13.2 7.1 19.3 11.1 20 18 24 37 20 31.2 31.	1905 $+$ 390 1905 $+$ 490 1905 $+$ 490 1905 $+$ 480 11.7 5.9 13.2 7.1 19.3 11.7 5.9 13.2 7.1 19.3 11.7 5.9 13.2 7.1 19.3 11.1 20 24 13.2 7.1 19.3 11.1 20 24 13.2 7.4 19.3 5.6.9 102.5 24 23.6 0.17 10.6 1.2.2 3.1 0.69 2.76 0.2 0.17 0.69 2.76 0.2 0.17 0.69 2.76 0.2 0.17 0.6 1.2 <th c<="" td=""><td>$\begin{array}{c c c c c c } \hline 190 \\ \hline 190 \\ \hline 1500 & 500 & 1500 & 500 & 1500 & 500 & 1000 \\ \hline 3 \\ \hline 0 \\ \hline 3 \\ \hline 1500 & 500 & 1500 & 500 & 1500 & 500 & 1000 \\ \hline 3 \\ \hline 1500 & 500 & 1500 & 500 & 1000 \\ \hline 4 \\ \hline 4 \\ \hline 4 \\ \hline 1 \\ 1 \\$</td><td>Image: TK-1M 1905TK-2M 1905TK-3M 1905TK-4M 1905TK-6M 1500 500 1500 500 1500 500 1000 9 36 49 63 89 6.5 4.5 11.7 5.9 13.2 7.1 19.3 11.1 20 2 124 186 248 372 20 22 124 186 248 372 25.6 18.6 48.9 27 60.3 34.2 93.2 56.9 102.5 2560 1730 4230 2360 5259 3024 6590 4250 7085 .4 4.12 5.8 7.5 10.88 31</td><td>$\begin{array}{c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td></th>	<td>$\begin{array}{c c c c c c } \hline 190 \\ \hline 190 \\ \hline 1500 & 500 & 1500 & 500 & 1500 & 500 & 1000 \\ \hline 3 \\ \hline 0 \\ \hline 3 \\ \hline 1500 & 500 & 1500 & 500 & 1500 & 500 & 1000 \\ \hline 3 \\ \hline 1500 & 500 & 1500 & 500 & 1000 \\ \hline 4 \\ \hline 4 \\ \hline 4 \\ \hline 1 \\ 1 \\$</td> <td>Image: TK-1M 1905TK-2M 1905TK-3M 1905TK-4M 1905TK-6M 1500 500 1500 500 1500 500 1000 9 36 49 63 89 6.5 4.5 11.7 5.9 13.2 7.1 19.3 11.1 20 2 124 186 248 372 20 22 124 186 248 372 25.6 18.6 48.9 27 60.3 34.2 93.2 56.9 102.5 2560 1730 4230 2360 5259 3024 6590 4250 7085 .4 4.12 5.8 7.5 10.88 31</td> <td>$\begin{array}{c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c } \hline 190 \\ \hline 190 \\ \hline 1500 & 500 & 1500 & 500 & 1500 & 500 & 1000 \\ \hline 3 \\ \hline 0 \\ \hline 3 \\ \hline 1500 & 500 & 1500 & 500 & 1500 & 500 & 1000 \\ \hline 3 \\ \hline 1500 & 500 & 1500 & 500 & 1000 \\ \hline 4 \\ \hline 4 \\ \hline 4 \\ \hline 1 \\ 1 \\$	Image: TK-1M 1905TK-2M 1905TK-3M 1905TK-4M 1905TK-6M 1500 500 1500 500 1500 500 1000 9 36 49 63 89 6.5 4.5 11.7 5.9 13.2 7.1 19.3 11.1 20 2 124 186 248 372 20 22 124 186 248 372 25.6 18.6 48.9 27 60.3 34.2 93.2 56.9 102.5 2560 1730 4230 2360 5259 3024 6590 4250 7085 .4 4.12 5.8 7.5 10.88 31	$\begin{array}{c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

			19057	K1M	190S	TK2M	190S	ГКЗМ	190ST	rk4M	190S	TK6M	190S	ТК8М
	Continuous torque at stall (4)	N.m	26	.6	5	7	8	4	10	9	1(62	20)9
	Current at continuous torque	Α	4.3	9.4	7.5	19.6	10.4	23.2	13	35.5	21.3	38.4	26.6	46.2
ORS C	Fluid input temperature (5)(6)	°C	20	C	2	0	2	0	2	0	2	0	2	0
MOT 60°	Fluid temperature rise	°C	5	5	(6	7	7	7	,		3	1	0
EDI	Housing temperature	°C		30	<	30	<	30	<	30	۷	30	<	30
OOL NIC	Fluid flow	l / mn	2	!	:	3		3	4	Ļ	4	1	4	1
	Losses	W	65	0	99	95	11	10	13	30	17	10	19	80
_ ۲	Pressure drop	Bar	< 0	.1	0.	12	0.	12	0.	3	0	.5	0.	.6
-	Power cable square section (7)	nxmm ²	4x1	1.5	4x1.5	4x2.5	4x1.5	4x4	4x1.5	4x6	4x2.5	4x10	4x4	4x10
	Power cable diameter (7)	mm	Ø8	.6	Ø8.6	Ø10.8	Ø8.6	Ø12.2	Ø8.6	Ø14	Ø10.8	Ø17.6	Ø12.2	Ø17.6

	_			190S	TK1M	190S	TK2M	190S	ГК ЗМ	190S	TK4M	190S	ТК6М	190S	ТК8М
		Continuous torque at stall (4)	N.m	36	6.3	7′	1.4	10)6	14	11	2	10	2	74
К.,		Current at continuous torque	A	6.1	13.2	9.5	24.8	13.5	30.2	17.3	47.2	29.3	52.7	36	63
A F	ပ	Fluid input temperature (5)(6)	°C	2	0	2	20	2	0	2	0	2	:0	2	20
DAT MOT	140°	Fluid temperature rise	°C		5		6	7	7	7	7		8	1	0
₹ L	₽	Housing temperature	°C	<	30	<	30	<	30	<	30	<	30	<	30
	DNG	Fluid flow	l / mn	4	4		6	e	6	7	7		9	i	8
E ME	N.	Losses	W	15	33	19	900	22	90	28	00	38	50	43	890
	5	Pressure drop	Bar	0	.1	0	.4	0.	6	0.	85	1	.8	1	.9
8		Power cable square section (7)	nxmm ²	4x	1.5	4x1.5	4x4	4x1.5	4x6	4x2.5	4x10	4x4	4x10	4x6	<u>4x10</u>
		Power cable diameter (7)	mm	Ø	3.6	Ø8.6	Ø12.2	Ø8.6	Ø14	Ø10.8	Ø17.6	Ø12 .2	Ø17.6	Ø14	<u>4x Ø9.5</u>

(1) Thermal conditions:

COMPLEMENTARY DATA FOR

Ambient temperature 20°C

Winding temperature rise 120°C

Stator housing in contact with the ambient air or integral on all its peripheral area with a metallic armature in contact with the ambient air. Stator housing secured on a metallic frame having an area equal to twice the cross section of the housing.

(2) Cold motor at 20°C

(3) See torque vs speed characteristics on :

http://www.alxion.com/

(4) Torque at stall or low speed.

(5) Fluid input temperature should not be lower for avoiding condensation inside the motor.

(6) For cooling fluid, use softened gycol-added water or fluids approved for closed cooling circuits.

(7) For curents lower than 53 Amps, one shielded cable

For curents over 53 Amps, four single shielded wires output (highlighted in the table)

Other speed characteristics are available, please contact us.

TORQUE VS SPEED CURVES MOTORS 190STK

TORQUE VS SPEED CURVES MOTORS 190STK

MOTORS 300 STK

Natural convection

DIMENSIONS FOR ALL 300 ST	К	
Housing internal centering diameter	A H8	282
Angle wire output / tapped holes	AF	15°
Housing external centering diameter (fluid cooling)	B f8	303
Housing external centering diameter (natural convection)	B f8	303
Rotoric internal centering diameter	C H7	190
Housing internal diameter	De	228
Depth of fluid front input / output groove	E1	4
Width of fluid front input / output groove	E2	12
Position of fluid front I/O groove	E3	20 (50)
Rotoric fixation holes	FR	12xM5 sur Ø199
Housing fixation holes	FS	12xM5 sur Ø290
O-ring groove depth	J1	2.3
O-ring groove width	J2	4
Position of rear o-ring groove	J3	9
Position of front o-ring groove	J4	11.5 <mark>(41.5)</mark>
Depth of housing internal centering diameter	LA	3
Alignment rotor / housing	P ± 0.1	34.5 (64.5)
Maximum rotoric contact diameter	Pmax	213
Depth of fluid rear I/O groove	S1	4
Width of fluid rear I/O groove	S2	10
Position of fluid rear I/O groove	S3	18

			DI	MENS	SION	S ACC	CORD	ING T	O SIZ	ΖE
			111, 11, 11, 11, 11, 11, 11, 11, 11, 11	1121	MCXI.	1.K4M	1K511	571. S71.	N.X.	1184
		/ 8) Å) Jos)/ Öş)/ð)/ð		300	
Housing length	LB±0.15	87.5 (117.5)	115 (145)	142.5 (172.5)	170 (200)	197.5 (227.5)	225 (255)	252.5 (282.5)	280 (310)	
Rotor length	R +0.15	27.5	55	82.5	110	137.5	165	192.5	220	

The dimensions in red in the table are valid in the case of a rated current greater than 38 A and class 6 shielded cable output

We also offer the possibility of not shielded output wires without need of stator length increase.

INTEGRATION:

The cables are made of PU, class 6, foreseen for cable-bearing chains, 2 mt standard length, copper square section according rated current.

- Rotor / housing alignment (P) has to be executed within +/- 0.1 mm. Optionally, we can supply a mounting tool for achieving that alignment in case of assembly without possibility of accurate alignment.
- ✓ Thermal devices cable consists of 2 shielded pairs 2x2x0.25mm² section, 7 mm max external diameter.
 - (De) represents: 1- The maximum diameter passing inside the housing.
 - 2- The minimum diameter necessary for rotor assembly.
- \checkmark (Pmax) diameter for pieces in contact with the rotor must never be exceeded.
- Tapped holes on each side of rotor and housing are angularly aligned.
- Cable positioning (AF) is theoretical. Leave a free room with a +/- 10 arc degrees tolerance around that position, on a 50 mm height from the housing side, for avoiding to stress the cables at the motor output.
- Do not tighten, twist or bend the power cable on the first 50 mm from motor side. Clamp the power cable after those 50 mm.
- When designing the assembly, take care to insure a perfect contact between housing and user's bore for avoiding thermal problems.
- For housing mounting, use either external centering diameter (B) or internal centering diameters (A).
- For execution tolerances (perpendicularity, concentricity...), please consult us.
- Fluid input and output pipes have to be placed at the opposite of wire outputs on the same axial plane.
- O-ring grooves designed for 3 mm diameter o-rings.

			(- 		<u> </u>									
				300S	TK1M	300S	TK2M	300S	ткзм	300S	TK4M	300S	ТК6М	300S	ТК8М
	Rated speed		rpm	200	800	200	800	200	800	200	800	200	800	200	800
	Continuous torque at stall	(1)(4)	N.m	5	4	9	8	14	45	18	34	2	61	31	19
	Current at continuous torque	(1)	Α	4.2	10.7	7	17.6	9	27	11.2	36	15.5	48.5	20.3	65
	Peak torque	(2)(3)	N.m	19	94	38	37	58	30	77	74	11	61	15	48
z	Current at peak torque	(2)	А	20.9	50.7	36.7	92.6	50.6	152	66.5	212.9	96.8	304.1	133.1	425.8
E	Rated power	(1)	kW	1.06	3.65	2	7.06	2.89	8.9	3.65	10.92	4.7	13.86	5.8	15.12
NEC N	Inertia		10 ⁻³ kg.m ²	26	ð.4	52	2.7	79).2	10	5.5	15	8.2	2′	11
õ	Weight		kg	11	.5	1	8	24	.5	3	1	4	4	5	57
SAL	Thermal time constant	(1)	s	49	95	66	69	90	07	11	45	16	21	20	97
TU	Thermal resistance	(1)	°C / W	0.1	184	0.1	164	0.	15	0.1	135	0.1	115	0.	.1
ž	Phase resistance at 20°C	(2)	Ω	7.05	1.09	2.82	0.44	1.85	0.205	1.286	0.126	0.808	0.082	0.54	0.053
	Phase inductance at I continuous		mH	27.4	4.1	17.7	2.8	13.9	1.53	11.1	1.1	7.8	0.8	5.5	0.53
	Electrical time constant	(2)	ms	3.	88	6	.3	7	.5	8	.6	9	.7	10).2
	Back emf constant (line to line)	(2)	V/rad.s	8.02	3.15	9.13	3.62	9.93	3.31	10.07	3.15	10.38	3.31	10.04	3.14
	Power cable square section	(7)	nxmm ²	4x	1.5	4x1.5	4x2.5	4x1.5	4x4	4x1.5	4x6	4x1.5	<u>4x6</u>	4x2.5	<u>4x10</u>
	Power cable diameter	(7)	mm	Ø	3.6	Ø8.6	Ø10.8	Ø8.6	Ø12.2	Ø8.6	Ø14	Ø8.6	4x Ø7.7	Ø10.8	4x Ø9.5
	Number of poles								2	4					

			30057	rK1M	300S	TK2M	300S	ГКЗМ	300S	TK4M	300S	TK6M	300S	тк8М
	Continuous torque at stall (4)	N.m	8	3	17	70	24	46	32	23	48	34	67	77
	Current at continuous torque	A	6.5	16.5	12.2	30.8	16.2	48.7	21	67.4	34.2	116.5	44	140.8
D MOTORS AT 60°C	Fluid input temperature (5)(6)	°C	20	0	2	0	2	0	2	0	2	0	2	:0
	Fluid temperature rise	°C	5	5	8	3	8	3	7	7	-	7	1	0
ED	Housing temperature	°C	< 2	25	<	30	< ;	30	<	30	<	30	<	30
	Fluid flow	l / mn	4	ŀ	4	1	4	ţ	Ę	5	-	7	-	7
	Losses	w	10	60	15	40	18	15	20	75	27	70	37	60
_ ۲	Pressure drop	Bar	0.	2	0.	.6	0.	8	0.	.3	0	.5	0	.7
-	Power cable square section (7)	nxmm ²	4x1	1.5	4x1.5	4x6	4x1.5	<u>4x6</u>	4x2.5	<u>4x10</u>	4x6	<u>4x25</u>	<u>4x6</u>	<u>4x35</u>
	Power cable diameter (7)	mm	Ø8	5.6	Ø8.6	Ø14	Ø8.6	4x Ø7.7	Ø10.8	4x Ø9.5	Ø14	<u>4x Ø13</u>	4x Ø7.7	<u>4x Ø15</u>

				3005	TK1M	300S	TK2M	300S	ткзм	300S	TK4M	300S	ТК6М	300ST	ТК8М
		Continuous torque at stall (4)	N.m	1(06	2	19	3:	25	43	36	6	51	871	-
К.,		Current at continuous torque	A	9	22.8	16.3	41	22.1	66.4	29.5	94.5	42.7	133.6	58.7	-
A F	ပ	Fluid input temperature (5)(6)	°C	2	0	2	20	2	20	2	0	2	20	20	-
DAT MOT	140°	Fluid temperature rise	°C	:	5	8	В	1	0	7	7		7	10	-
Ϋ́Υ	АТ	Housing temperature	°C	<	25	<	30	<	30	<	30	<	30	< 30	-
	N ING	Fluid flow	l / mn	ł	8	7	7		7	1	2	1	6	14	-
E M	IND	Losses	W	24	40	32	275	40	20	49	72	63	84	7956	-
	5	Pressure drop	Bar	1	.1	1.	.5	:	2	1.	6	2	.2	2.2	-
8 -		Power cable square section (7)	nxmm ²	4x1.5	4x4	4x1.5	<u>4x6</u>	4x4	<u>4x10</u>	4x4	<u>4x25</u>	<u>4x6</u>	<u>4x35</u>	<u>4x10</u>	-
		Power cable diameter (7)	mm	Ø8.6	Ø12.2	Ø8.6	4x Ø7.7	Ø12.2	4x Ø9.5	Ø12.2	<u>4x Ø13</u>	4x Ø7.7	<u>4x Ø15</u>	<u>4xØ9.5</u>	-

(1) Thermal conditions:

COMPLEMENTARY DATA FOR

Ambient temperature 20°C

Winding temperature rise 120°C

Stator housing in contact with the ambient air or integral on all its peripheral area with a metallic armature in contact with the ambient air. Stator housing secured on a metallic frame having an area equal to twice the cross section of the housing.

(2) Cold motor at 20°C

(3) See torque vs speed characteristics on :

http://www.alxion.com/

- (4) Torque at stall or low speed.
- (5) Fluid input temperature should not be lower for avoiding condensation inside the motor.

(6) For cooling fluid, use softened gycol-added water or fluids approved for closed cooling circuits.

(7) For curents lower than 38 Amps, one shielded cable

For curents over 38 Amps, four single shielded wires output (highlighted in the table)

Other speed characteristics are available, please contact us.

TORQUE VS SPEED CURVES MOTORS 300STK

TORQUE VS SPEED CURVES MOTORS 300STK

MOTORS 400 STK

Natural convection

DIMENSIONS FOR ALL 400 ST	К	
Housing internal centering diameterr	A H8	380
Angle wire output / tapped holes	AF	15°
Housing external centering diameter (fluid cooling)	B f8	404
Housing external centering diameter (natural convection)	B f8	404
Rotoric internal centering diameter	C H7	258
Housing internal diameter	De	306
Depth of fluid front input / output groove	E1	5.5
Width of fluid front input / output groove	E2	9.3
Position of fluid front I/O groove	E3	27.2 (57.2)
Rotoric fixation holes	FR	12xM6 sur Ø268
Housing fixation holes	FS	12xM6 sur Ø390
O-ring groove depth	J1	3.4
O-ring groove width	J2	5.2
Position of rear o-ring groove	J3	18
Position of front o-ring groove	J4	18 <mark>(48)</mark>
Depth of housing internal centering diameter	LA	3
Alignment rotor / housing	P ± 0.1	39 <mark>(69)</mark>
Maximum rotoric contact diameter	Pmax	287
Depth of fluid rear I/O groove	S1	5.5
Width of fluid rear I/O groove	S2	9.3
Position of fluid rear I/O groove	S3	27.2

			DI	MENS	SION	S ACC	CORD	ING T	O SIZ	ΖE			
		1000 T	4002 VIN	400°2.	400°T.	400CT.	4005 × 145M	400STI	4002 MILL	1100.			
Housing length	LB±0.15	100.5 (130.5)	128 (158)	155.5 (185.5)	183 (213)	210.5 (240.5)	238 (268)	265.5 (295.5)	293 (323)				
Rotor length	R +0.15	27.5	55	82.5	110	137.5	165	192.5	220				

The dimensions in red in the table are valid in the case of a rated current greater than 53 A and class 6 shielded cable output

We also offer the possibility of not shielded output wires without need of stator length increase.

INTEGRATION:

The cables are made of PU, class 6, foreseen for cable-bearing chains, 2 mt standard length, copper square section according rated current.

Rotor / housing alignment (P) has to be executed within +/- 0.1 mm. Optionally, we can supply a mounting tool for achieving that alignment in case of assembly without possibility of accurate alignment.

- ✓ Thermal devices cable consists of 2 shielded pairs 2x2x0.25mm² section, 7 mm max external diameter.
 - (De) represents: 1- The maximum diameter passing inside the housing.
 - The minimum diameter necessary for rotor assembly.
- (Pmax) diameter for pieces in contact with the rotor must never be exceeded.
- Tapped holes on each side of rotor and housing are angularly aligned.

Cable positioning (AF) is theoretical. Leave a free room with a +/- 10 arc degrees tolerance around that position, on a 50 mm height from the housing side, for avoiding to stress the cables at the motor output.

- Do not tighten, twist or bend the power cable on the first 50 mm from motor side. Clamp the power cable after those 50 mm.
- V When designing the assembly, take care to insure a perfect contact between housing and user's bore for avoiding thermal problems.
- For housing mounting, use either external centering diameter (B) or internal centering diameters (A).
- ✓ For execution tolerances (perpendicularity, concentricity...), please consult us.
- Fluid input and output pipes have to be placed at the opposite of wire outputs on the same axial plane.
- O-ring grooves designed for 4 mm diameter o-rings.

			(
				400S	TK1M	400S	TK2M	400S	ТКЗМ	400S	ТК4М	400S	TK6M	400ST	ГК8М
	Rated speed		rpm	200	800	200	800	200	800	200	800	200	800	200	-
	Continuous torque at stall	(1)(4)	N.m	1	13	22	25	3	19	4(00	5	70	730	-
	Current at continuous torque	(1)	А	8.7	23.5	14.5	46.8	18	52.2	24.5	77	34.9	103	41	-
	Peak torque	(2)(3)	N.m	44	40	88	30	13	20	17	60	26	40	3520	-
z	Current at peak torque	(2)	А	46.9	126	78.1	252.3	102.5	298	149.1	468.6	218.7	656	273.3	-
E	Rated power	(1)	kW	2.25	7.6	4.3	15.5	5.96	18.3	7.6	21	9.5	24	11.3	-
NEC N	Inertia		10⁻³kg.m²	8	2	10	63	24	14	32	25	48	38	650	-
õ	Weight		kg	2	3	3	5	46	6.5	5	8	8	1	104	-
SAL	Thermal time constant	(1)	s	99	90	13	07	15	30	17	56	22	18	2547	-
TU	Thermal resistance	(1)	°C / W	0.1	117	0.0	98	0.0)94	0.0)78	0.0	071	0.063	-
ž	Phase resistance at 20°C	(2)	Ω	2.23	0.31	0.981	0.094	0.69	0.081	0.39	0.04	0.236	0.026	0.187	-
	Phase inductance at I continuous		mH	11.8	1.62	8.7	0.83	7.3	0.86	4.8	0.49	3.4	0.37	2.9	-
	Electrical time constant	(2)	ms	5	.6	8	.9	10).6	12	.3	14	1.4	15.5	-
	Back emf constant (line to line)	(2)	V/rad.s	7.96	2.96	9.54	2.95	10.9	3.7	10	3.18	10.2	3.41	10.9	-
	Power cable square section	(7)	nxmm²	4x1.5	4x4	4x1.5	4x10	4x2.5	4x10	4x4	<u>4x16</u>	4x6	<u>4x25</u>	4x10	-
	Power cable diameter	(7)	mm	Ø8.6	Ø12.2	Ø8.6	Ø17.6	Ø10.8	Ø17.6	Ø12.2	<u>4xØ11</u>	Ø14	<u>4xØ13</u>	Ø17.6	-
	Number of poles								2	4					

			1	400ST	TK1M	400S	TK2M	400S	ТК 3М	400S	TK4M	400S	TK6M	400ST	ГК8М
	Continuous torque at stall	(4)	N.m	17	74	39	96	56	61	78	30	11	33	1428	-
	Current at continuous torque		А	13.6	36.5	27	87.2	33.4	97.3	51	160	72.2	216	85	-
ORS C	Fluid input temperature (5)	(6)	°C	2	0	2	0	2	0	2	0	2	0	20	-
MOT 60°6	Fluid temperature rise		°C	ε	3		3	1	0	1	0	1	0	10	-
ËDI	Housing temperature		°C	< ;	30	<	30	<	30	<	30	<	30	< 30	-
	Fluid flow		l / mn	4	Ļ	-	7	Ę	5	7	7	8	3	9	-
NIN D-C	Losses		W	16	45	27	60	30	27	36	60	44	20	4940	-
_ ۲	Pressure drop		Bar	0.	1	0	.9	0.	75	0.	4	0	.4	0.6	-
-	Power cable square section	(7)	nxmm ²	4x1.5	4x6	4x4	<u>4x16</u>	4x6	<u>4x25</u>	4x10	<u>4x50</u>	<u>4x16</u>	<u>4x70</u>	<u>4x16</u>	-
	Power cable diameter	(7)	mm	Ø8.6	Ø14	Ø12.2	<u>4xØ11</u>	Ø14	<u>4xØ13</u>	Ø17.6	<u>4xØ17</u>	<u>4xØ11</u>	<u>4xØ20</u>	<u>4xØ11</u>	-

	_			400S	TK1M	400S	TK2M	400ST	ГК ЗМ	400S	TK4M	400S	ТК6М	400ST	ТК8М
		Continuous torque at stall (4)	N.m	2:	25	46	67	69	98	93	35	1384	-	1846	-
В.,		Current at continuous torque	A	18.7	50.4	32.7	106	42.5	123.6	62.6	197	90	-	113	-
A F	ပ	Fluid input temperature (5)(6)	°C	2	:0	2	20	2	0	2	0	20	-	20	-
DAT MOT	140°	Fluid temperature rise	°C	8	8	ł	В	1	0	1	0	10	-	10	-
Ϋ́Υ	₹	Housing temperature	°C	<	30	۷	30	<	30	< ;	30	< 30	-	< 30	-
ENTAR	9NG	Fluid flow	l / mn	ł	8	1	1	1	0	1	2	15	-	18	-
E ME	<u>s</u>	Losses	W	37	40	48	30	58	33	65	80	8180	-	10400	-
	5	Pressure drop	Bar	0	.6	1	.9	2.	3	0.	9	1.2	-	2.1	-
_ଓ –		Power cable square section (7)	nxmm ²	4x2.5	4x10	4x6	<u>4x25</u>	4x10	<u>4x25</u>	<u>4x10</u>	<u>4x50</u>	<u>4x16</u>	-	<u>4x25</u>	-
		Power cable diameter (7)	mm	Ø10.8	Ø17.6	Ø14	<u>4xØ13</u>	Ø17.6	<u>4xØ13</u>	4x Ø9.5	<u>4xØ17</u>	<u>4xØ11</u>	-	<u>4xØ13</u>	-

(1) Thermal conditions:

COMPLEMENTARY DATA FOR

Ambient temperature 20°C

Winding temperature rise 120°C

Stator housing in contact with the ambient air or integral on all its peripheral area with a metallic armature in contact with the ambient air. Stator housing secured on a metallic frame having an area equal to twice the cross section of the housing.

(2) Cold motor at 20°C

(3) See torque vs speed characteristics on :

http://www.alxion.com/

- (4) Torque at stall or low speed.
- (5) Fluid input temperature should not be lower for avoiding condensation inside the motor.

(6) For cooling fluid, use softened gycol-added water or fluids approved for closed cooling circuits.

(7) For curents lower than 53 Amps, one shielded cable

For curents over 53 Amps, four single shielded wires output (highlighted in the table)

Other speed characteristics are available, please contact us.

TORQUE VS SPEED CURVES MOTORS 400STK

TORQUE VS SPEED CURVES MOTORS 400STK

MOTORS 500 STK

Natural convection

DIMENSIONS FOR ALL 500 ST	К	
Housing internal centering diameter	A H8	470
Angle wire output / tapped holes	AF	15°
Housing external centering diameter (fluid cooling)	B f8	502
Housing external centering diameter (natural convection)	B f8	502
Rotoric internal centering diameter	C H7	350
Housing internal diameter	De	403
Depth of fluid front input / output groove	E1	5
Width of fluid front input / output groove	E2	18.95
Position of fluid front I/O groove	E3	23.2 (63.2)
Rotoric fixation holes	FR	12xM8 sur Ø364
Housing fixation holes	FS	12xM8 sur Ø482
O-ring groove depth	J1	3.4
O-ring groove width	J2	5.2
Position of rear o-ring groove	J3	9
Position of front o-ring groove	J4	14 (54)
Depth of housing internal centering diameter	LA	3
Alignment rotor / housing	P ± 0.1	37 (77)
Maximum rotoric contact diameter	Pmax	384
Depth of fluid rear I/O groove	S1	5
Width of fluid rear I/O groove	S2	18.9
Position of fluid rear I/O groove	S3	18.2

				DIME	INSIC	ONS A	CCO	RDIN	G TO	SIZE	
		200STI	500STL	5005	5005 NEX	5005r.	5005r.	5005	500STL	500STL	165.
Housing length	LB±0.15	93 (133)	120.5 (160.5)	148 (188)	175.5 (<mark>215.5)</mark>	203 (243)	230.5 (270.5)	258 (298)	285.5 (325.5)	313 (353)	
Rotor length	R +0.15	27.5	55	82.5	110	137.5	165	192.5	220	247.5	

The dimensions in red in the table are valid in the case of a rated current greater than 53 A and class 6 shielded cable output

We also offer the possibility of not shielded output wires without need of stator length increase.

INTEGRATION:

The cables are made of PU, class 6, foreseen for cable-bearing chains, 2 mt standard length, copper square section according rated current.

Rotor / housing alignment (P) has to be executed within +/- 0.1 mm. Optionally, we can supply a mounting tool for achieving that alignment in case of assembly without possibility of accurate alignment.

✓ Thermal devices cable consists of 2 shielded pairs 2x2x0.25mm² section, 7 mm max external diameter.

- (De) represents: 1- The maximum diameter passing inside the housing.
 - The minimum diameter necessary for rotor assembly.
- (Pmax) diameter for pieces in contact with the rotor must never be exceeded.
- ✓ Tapped holes on each side of rotor and housing are angularly aligned.

Cable positioning (AF) is theoretical. Leave a free room with a +/- 10 arc degrees tolerance around that position, on a 50 mm height from the housing side, for avoiding to stress the cables at the motor output.

- Do not tighten, twist or bend the power cable on the first 50 mm from motor side. Clamp the power cable after those 50 mm.
- When designing the assembly, take care to insure a perfect contact between housing and user's bore for avoiding thermal problems.
- ✓ For housing mounting, use either external centering diameter (B) or internal centering diameters (A).
- ✓ For execution tolerances (perpendicularity, concentricity...), please consult us.
- Fluid input and output pipes have to be placed at the opposite of wire outputs on the same axial plane.
- O-ring grooves designed for 4 mm diameter o-rings.

			· · · ·			-									
				500S	TK1M	500S	ТК2М	500S	ткзм	500S	ТК4М	500S	TK6M	500ST	ГК9М
	Rated speed		rpm	50	600	50	600	50	600	50	600	50	-	50	-
	Continuous torque at stall	(1)(4)	N.m	2	10	3	65	52	20	64	10	878	-	1185	-
	Current at continuous torque	(1)	А	7.3	37.4	9.2	58.3	13	82.3	14.8	91.8	18.8	-	23.1	-
	Peak torque	(2)(3)	N.m	70	68	15	36	23	604	30	72	4608	-	6912	-
z	Current at peak torque	(2)	А	32.4	166.3	46.7	295.6	70	443	85.8	532	120.9	-	166.3	-
E	Rated power	(1)	kW	1.05	9.95	1.8	19	2.6	24.3	3.3	27.3	4.6	-	6.22	-
NA N	Inertia		10⁻³kg.m²	2	16	4	33	64	49	86	65	1296	-	1944	-
อิ	Weight		kg	27	' .4	4	3	5	8	7	3	103	-	148	-
ÅL	Thermal time constant	(1)	s	10	36	15	93	21	53	27	10	3830	-	4670	-
	Thermal resistance	(1)	°C / W	0.0)84	0.0)78	0.0)72	0.0	68	0.059	-	0.05	-
ž	Phase resistance at 20°C	(2)	Ω	5.66	0.218	3.46	0.086	1.83	0.046	1.44	0.038	0.927	-	0.665	-
	Phase inductance at I continuous		mH	26.2	1	25.3	0.63	17	0.42	15.1	0.4	11.5	-	9.2	-
	Electrical time constant	(2)	ms	4	.6	7	.3	9	.3	10	.5	12.4	-	13.8	-
	Back emf constant (line to line)	(2)	V/rad.s	18.91	3.69	26.23	4.15	26.28	4.15	28.59	4.61	30.43	-	33.2	-
	Power cable square section	(7)	nxmm ²	4x1.5	4x6	4x1.5	<u>4x10</u>	4x1.5	<u>4x16</u>	4x1.5	<u>4x16</u>	4x2.5	-	4x4	-
	Power cable diameter	(7)	mm	Ø8.6	Ø14	Ø8.6	4x Ø9.5	Ø8.6	<u>4xØ11</u>	Ø8.6	<u>4xØ11</u>	Ø10.8	-	Ø12.2	-
	Number of poles								3	6					

			500S	TK1M	500S	TK2M	500S	ткзм	500S	TK4M	500S	TK6M	500ST	ГК9М
	Continuous torque at stall (4) N.m	28	35	58	88	83	31	11	22	1731	-	2530	-
	Current at continuous torque	A	9.9	50.7	14.8	93.7	20.7	131	25.9	160.6	37.3	-	50	-
ORS C	Fluid input temperature (5)(6) °C	2	20		20		20		20		-	20	-
MOT 60°(Fluid temperature rise	°C	(6	(6	e	3	Ę	5	6	-	8	-
ED	Housing temperature	°C	<	30	 	30	<	30	<	30	< 30	-	< 30	-
	Fluid flow	I / mn	!	5	1	8	ç	9	1	2	14	-	14	-
NIN D-C	Losses	w	20	90	27	'90	29	70	35	70	4870	-	6190	-
_ ۲	Pressure drop	Bar	0	.1	0	.4	0.	.3	0.	4	0.4	-	0.6	-
-	Power cable square section (7) nxmm ²	4x1.5	4x10	4x1.5	<u>4x16</u>	4x2.5	<u>4x35</u>	4x4	<u>4x50</u>	4x6	-	4x10	-
	Power cable diameter (7) mm	Ø8.6	Ø17.6	Ø8.6	<u>4xØ11</u>	Ø10.8	<u>4xØ15</u>	Ø12.2	<u>4xØ17</u>	Ø14	-	Ø17.6	-

				500S	TK1M	500S	TK2M	500S	ткзм	500S	TK4M	500ST	TK6M	500ST	ТК9М
		Continuous torque at stall (4)	N.m	3	30	785		1180		1550		1550 2394		3590	-
К.,		Current at continuous torque	A	13.5	69.2	20.3	130	30.7	194	37.2	230.5	54	-	73.4	-
A F	ပ	Fluid input temperature (5)(6)	°C	20		20		20		20		20	-	20	-
DAT MOT	140°	Fluid temperature rise	°C	6		e	6 6		6		6	-	8	-	
₹ L	АT	Housing temperature	°C	2	5	2	25	2	5	<	25	25	-	< 30	-
	NG	Fluid flow	I/mn	1	4	1	8	2	3	2	5	35	-	35	-
Р И Ш И Ц	UN I	Losses	w	46	20	62	260	77	60	87	70	12160	-	15890	-
MPL	5	Pressure drop	Bar	0	.4	1.	.8	1	.3	1	.6	2		3	-
8 –		Power cable square section (7)	nxmm ²	4x1.5	<u>4x10</u>	4x2.5	<u>4x35</u>	4x6	<u>4x50</u>	4x6	<u>4x70</u>	<u>4x10</u>	-	<u>4x16</u>	-
		Power cable diameter (7)	mm	Ø8.6	<u>4x Ø9.5</u>	Ø10.8	<u>4xØ15</u>	Ø14	<u>4xØ17</u>	Ø14	<u>4x Ø20</u>	<u>4xØ9.5</u>	-	<u>4xØ11</u>	-

(1) Thermal conditions:

COMPLEMENTARY DATA FOR

Ambient temperature 20°C

Winding temperature rise 120°C

Stator housing in contact with the ambient air or integral on all its peripheral area with a metallic armature in contact with the ambient air. Stator housing secured on a metallic frame having an area equal to twice the cross section of the housing.

(2) Cold motor at 20°C.

- (3) See torque vs speed characteristics on :
- http://www.alxion.com/
- (4) Torque at stall or low speed.
- (5) Fluid input temperature should not be lower for avoiding condensation inside the motor.
- (6) For cooling fluid, use softened gycol-added water or fluids approved for closed cooling circuits.
- (7) For curents lower than 53 Amps, one shielded cable
 - For curents over 53 Amps, four single shielded wires output (highlighted in the table)

TORQUE VS SPEED CURVES MOTORS 500STK

TORQUE VS SPEED CURVES MOTORS 500STK

MOTORS 800 STK

Natural convection

DIMENSIONS FOR ALL 800 ST	ĸ	
Housing internal centering diameter	A H8	762
Angle wire output / tapped holes	AF	11.25°
Housing external centering diameter (fluid cooling)	B f8	795
Housing external centering diameter (natural convection)	B f8	795
Rotoric internal centering diameter	C H7	630
Housing internal diameter	De	689
Depth of fluid front input / output groove	E1	8
Width of fluid front input / output groove	E2	15.5
Position of fluid front I/O groove	E3	28 <mark>(68)</mark>
Rotoric fixation holes	FR	16xM8 sur Ø645
Housing fixation holes	FS	16xM8 sur Ø774
O-ring groove depth	J1	4.9
O-ring groove width	J2	7.4
Position of rear o-ring groove	J3	13.7
Position of front o-ring groove	J4	15.7 <mark>(55.7)</mark>
Depth of housing internal centering diameter	LA	5
Alignment rotor / housing	P ± 0.2	47 (87)
Maximum rotoric contact diameter	Pmax	666
Depth of fluid rear I/O groove	S1	8
Width of fluid rear I/O groove	S2	15.5
Position of fluid rear I/O groove	S3	26

The dimensions in red in the table are valid in the case of a rated current greater than 53 A and class 6 shielded cable output

We also offer the possibility of not shielded output wires without need of stator length increase.

INTEGRATION:

The cables are made of PU, class 6, foreseen for cable-bearing chains, 2 mt standard length, copper square section according rated current.

- Rotor / housing alignment (P) has to be executed within +/- 0.2 mm. Optionally, we can supply a mounting tool for achieving that alignment in case of assembly without possibility of accurate alignment.
- ✓ Thermal devices cable consists of 2 shielded pairs 2x2x0.25mm² section, 7 mm max external diameter.
 - (De) represents: 1- The maximum diameter passing inside the housing.
 - The minimum diameter necessary for rotor assembly.
- ✓ (Pmax) diameter for pieces in contact with the rotor must never be exceeded.
- ✓ Tapped holes on each side of rotor and housing are angularly aligned.
- Cable positioning (AF) is theoretical. Leave a free room with a +/- 5 arc degrees tolerance around that position, on a 50 mm height from the housing side, for avoiding to stress the cables at the motor output.
- Do not tighten, twist or bend the power cable on the first 50 mm from motor side. Clamp the power cable after those 50 mm.
- When designing the assembly, take care to insure a perfect contact between housing and user's bore for avoiding thermal problems.
- ✓ For housing mounting, use either external centering diameter (B) or internal centering diameters (A).
- ✓ For execution tolerances (perpendicularity, concentricity...), please consult us.
- Fluid input and output pipes have to be placed at the opposite of wire outputs on the same axial plane.
- O-ring grooves designed for 6 mm diameter o-rings.

				800S	TK1M	800S	TK2M	800S	TK4M	800S1	TK6M
	Rated speed		rpm	30	250	30	250	30	250	30	-
	Continuous torque at stall	(1)(4)	N.m	6	10	11	1127		10	2708	-
	Current at continuous torque	(1)	А	13.9	43.2	19	65.6	26.5	106	33.5	-
	Peak torque	(2)(3)	N.m	18	85	37	3770		40	11310	-
N	Current at peak torque	(2)	А	50.8	158	74.9	258.6	118.5	474.2	167.4	-
CTIC	Rated power	(1)	kW	1.92	15.01	3.5	22.6	6.3	33.1	8.53	-
NVE	Inertia		10⁻³kg.m²	12	270	25	40	50	80	7620	-
col	Weight		kg	5	5	8	2	1:	38	193	-
RAL	Thermal time constant	(1)	s	4	44	6	35	11	66	1656	-
ATUI	Thermal resistance	(1)	°C / W	0.0	035	0.0)33	0.	03	0.028	-
N	Phase resistance at 20°C	(2)	Ω	3.16	0.326	1.66	0.139	0.95	0.06	0.585	-
	Phase inductance at I continuous		mH	15.4	1.6	14.2	1.2	11.3	0.7	8.6	-
	Electrical time constant	(2)	ms	4	.9	8	.5	11	.9	14.7	-
	Back emf constant (line to line)	(2)	V/rad.s	28.6	9.2	38.9	11.2	48.94	12.3	52.1	-
	Power cable square section	(7)	nxmm ²	4x1.5	4x10	4x2.5	<u>4x10</u>	4x4	<u>4x25</u>	4x6	-
	Power cable diameter	(7)	mm	Ø8.6	Ø17.6	Ø10.8	<u>4xØ9.5</u>	Ø12.2	<u>4xØ13</u>	Ø14	-
	Number of poles						4	8			

				800S	TK1M	800S	TK2M	800S	TK4M	80051	FK6M
	Continuous torque at stall	(4)	N.m	8	03	15	80	31	60	4720	-
	Current at continuous torque		А	18.2	53.6	26.3	90.9	41.5	166	58.5	-
ORS	Fluid input temperature	(5)(6)	°C	2	20	2	:0	2	0	20	-
10T 60°(Fluid temperature rise		°C	1	0	1	0	1	0	10	-
ED	Housing temperature		°C	3	2	3	0	<	30	< 30	-
	Fluid flow		l/mn	-	7	8	3	1	1	15	-
NIN D	Losses		W	37	'10	41	10	58	30	7400	-
_ ۲	Pressure drop		Bar	<	0.1	0	.1	0	.3	0.7	-
-	Power cable square section	(7)	nxmm ²	4x2.5	<u>4x10</u>	4x4	<u>4x16</u>	4x10	<u>4x50</u>	<u>4x10</u>	-
	Power cable diameter	(7)	mm	Ø10.8	<u>4xØ9.5</u>	Ø12.2	<u>4xØ11</u>	Ø17.6	<u>4xØ17</u>	<u>4xØ9.5</u>	-

				800S	TK1M	800S	ТК2М	800S	TK4M	80051	ГК6М
	Continuous torque at stall	(4)	N.m	10	39	2057		4100		6100	-
	Current at continuous torque		А	24	74.7	35.2	121.6	55.5	222	77.4	-
ors c	Fluid input temperature	(5)(6)	°C	20		20		20		20	-
40 ⁰	Fluid temperature rise		°C	10		10		10		10	-
A E	Housing temperature		°C	31		< 30		< 30		< 30	-
	Fluid flow		l / mn	1	4	1	6	2	3	29	-
O DI	Losses		W	79	40	90	60	128	330	15850	-
× د	Pressure drop		Bar	0.2		0.3		1.	.2	2.1	-
-	Power cable square section	(7)	nxmm ²	4x4	<u>4x16</u>	4x6	<u>4x25</u>	<u>4x10</u>	<u>4x70</u>	<u>4x16</u>	-
	Power cable diameter	(7)	mm	Ø12.2	<u>4xØ11</u>	Ø14	<u>4xØ13</u>	<u>4xØ9.5</u>	<u>4xØ20</u>	<u>4xØ11</u>	-

(1) Thermal conditions:

COMPLEMENTARY DATA FOR

COMPLEMENTARY DATA FOR

Ambient temperature 20°C

Winding temperature rise 120°C

Stator housing in contact with the ambient air or integral on all its peripheral area with a metallic armature in contact with the ambient air. Stator housing secured on a metallic frame having an area equal to twice the cross section of the housing.

(2) Cold motor at 20°C.

(3) See torque vs speed characteristics on :

http://www.alxion.com/

- (4) Torque at stall or low speed.
- (5) Fluid input temperature should not be lower for avoiding condensation inside the motor.

(6) For cooling fluid, use softened gycol-added water or fluids approved for closed cooling circuits.

(7) For curents lower than 53 Amps, one shielded cable

For curents over 53 Amps, four single shielded wires output (highlighted in the table)

TORQUE VS SPEED CURVES MOTORS 800STK

Max. transient characteristics motor at 20°C 400VAC mains / 540VDC bus with flux vector control

----- Max. transient characteristics motor at rated temp 400VAC mains / 540VDC bus with flux vector control

CODIFICATION FOR STK MOTORS

- C: Cooling:
 - 1: Natural convection:
 - Motor housing without cooling grooves
 - 2: Liquid cooling:
 - Motor housing with cooling grooves
 - 3: Integrated cooling jacket:
 - Motor with integrated cooling jacket (see table for dimensions)
- W: Winding code:
 - 01: Low speed in table of characteristics
 - 02: High speed in table of characteristics
 - XX: Special windings, contact us
- H: Motor technology:
 - H: High precision technology ; cogging <1% of rated torque in natural convection (145STK-190STK)
 - S: Standard precision technology ; cogging ≤2% of rated torque in natural convection (145STK-190STK)
 - X: High precision technology ; cogging <2% of rated torque in natural convection (300STK-800STK)
- L: Cable length:
 - 0 to 9 : Length since side of the motor

A to Z : Length and/or specific square section

<u>High accuracy resolver ALXION RES FC (up to +/- 1 arc min) with high</u> <u>internal diameter (90 mm)</u>

Based on the need for a maximal accuracy of the servomechanism, the resolvers developed by **ALXION** are adapted to the Motors for Direct Drive of its FC Range and ST Range and can be used advantageously in axis using STK motors. They represent a further necessary step towards the exploitation of the direct drive technology.

	RES FC 6-72-32-90	RES FC 6-72-32-90-50	RES FC 1-72-32-90
Number of poles	12	12	2
Mechanical accuracy	±1 arc min	±1 arc min	±50 arc min
Internal diameter	Ø90mm	Ø90mm	Ø90mm
Rated supply voltage	7V	7V	7V
Frequency	10 kHz	10 kHz	10 kHz
Transformation ratio	0.23	0.50	0.165
Input impedance	Zro = 77 + j177	Zro = 77 + j177	Zro = 131 + j 198
Output impedance	Zss = 118 + j 258	Zss = 369 + j869	Zss = 311 + j 431
Phase shift	7°	7°	5°
Noise at null coupling	< 3 / 1000	< 3 / 1000	< 3 / 1000

DIMENSIONS

Color	Signal
Yellow	Sin+
Blue	Sin-
Red	Cos+
Black	Cos-
Red / White	+Vref
Black / White	0

Join ALXION on its WEB site: http://www.alxion.com

Our site allows you to keep up with our products evolution, to download technical information or catalogues on your computer, to send us messages by e-mail. Keep in touch with us: Surf on our bilingual site!

ACCESS TO OUR HEAD OFFICE

Head Office:

Parc Technologique "Les Fossés Jean" 142-176, Avenue de Stalingrad F - 92712 COLOMBES Cedex Phone: (33) 1 41 30 63 04 Fax: (33) 1 41 30 61 36 Web site: http://www.alxion.com

Edition November 2017 - Revision 5.01